128 research outputs found

    HI Observations of the Supermassive Binary Black Hole System in 0402+379

    Full text link
    We have recently discovered a supermassive binary black hole system with a projected separation between the two black holes of 7.3 parsecs in the radio galaxy 0402+379. This is the most compact supermassive binary black hole pair yet imaged by more than two orders of magnitude. We present Global VLBI observations at 1.3464 GHz of this radio galaxy, taken to improve the quality of the HI data. Two absorption lines are found toward the southern jet of the source, one redshifted by 370 +/- 10 km/s and the other blueshifted by 700 +/- 10 km/s with respect to the systemic velocity of the source, which, along with the results obtained for the opacity distribution over the source, suggests the presence of two mass clumps rotating around the central region of the source. We propose a model consisting of a geometrically thick disk, of which we only see a couple of clumps, that reproduces the velocities measured from the HI absorption profiles. These clumps rotate in circular Keplerian orbits around an axis that crosses one of the supermassive black holes of the binary system in 0402+379. We find an upper limit for the inclination angle of the twin jets of the source to the line of sight of 66 degrees, which, according to the proposed model, implies a lower limit on the central mass of ~7 x 10^8 Msun and a lower limit for the scale height of the thick disk of ~12 pc .Comment: 20 pages, 7 figures. Accepted on the Astrophysical Journa

    Bacterial isolates from patients with preterm labor with and without preterm rupture of the fetal membranes.

    Get PDF
    OBJECTIVE: The aim of this study is to describe the bacterial flora of women in preterm labor with or without premature rupture of membranes. METHODS: Retrospective studies of 239 patients with preterm labor were performed. RESULTS: One hundred and twenty-three of 239 patients with preterm labor (51.5%) had bacterial vaginosis. Seventy of the 239 patients with preterm labor (29.3%) developed premature rupture of the membranes (preterm PROM). Of the 70 patients with preterm PROM, 51 (72.9%) had bacterial vaginosis. Therefore, 51 of the 123 patients with bacterial vaginosis (41.5%) developed preterm PROM. An increased number of organisms detected from the vaginal discharge in patients with preterm labor was associated with preterm PROM by Cochran-Armitage test. An increased number of organisms detected from the vaginal discharge in patients with preterm labor complicated with bacterial vaginosis was significantly associated with preterm PROM by Cochran-Armitage test. CONCLUSIONS: In preterm labor, the number of different species detected in the vagina provide sensitive and specific prediction of preterm PROM in patients with preterm labor

    Feature issue of digital holography and 3D imaging (DH) introduction

    Get PDF
    The OSA Topical Meeting "Digital Holography and 3D Imaging (DH)," was held in Seattle, Washington, July 13-17, 2014. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year Optics Express (OE) and AO jointly decided to have one such feature issue in each journal. The DH meeting will continue in the future, as expected, and the next meeting is scheduled to be held on 24-28 May 2015, in Shanghai Institute of Optics and Fine Mechanics, Shanghai, China. © 2014 Optical Society of Americ

    Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares

    Full text link
    We propose to search for gravitational waves from PKS 2155-304 as well as other blazars. PKS 2155-304 emitted a long duration energetic flare in July 2006, with total isotropic equivalent energy released in TeV gamma rays of approximately 104510^{45} ergs. Any possible gravitational wave signals associated with this outburst should be seen by gravitational wave detectors at the same time as the electromagnetic signal. During this flare, the two LIGO interferometers at Hanford and the GEO detector were in operation and collecting data. For this search we will use the data from multiple gravitational wave detectors. The method we use for this purpose is a coherent network analysis algorithm and is called {\tt RIDGE}. To estimate the sensitivity of the search, we perform numerical simulations. The sensitivity to estimated gravitational wave energy at the source is about 2.5×10552.5 \times 10^{55} ergs for a detection probability of 20%. For this search, an end-to-end analysis pipeline has been developed, which takes into account the motion of the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in response to referee comment

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Establishing accretion flares from massive black holes as a major source of high-energy neutrinos

    Full text link
    High-energy neutrinos have thus far been observed in coincidence with time-variable emission from three different accreting black holes: a gamma-ray flare from a blazar (TXS 0506+056), an optical transient following a stellar tidal disruption (AT2019dsg), and an optical outburst from an active galactic nucleus (AT2019fdr). Here we present a unified explanation for the latter two of these sources: accretion flares that reach the Eddington limit. A signature of these events is a luminous infrared reverberation signal from circumnuclear dust that is heated by the flare. Using this property we construct a sample of similar sources, revealing a third event coincident with a PeV-scale neutrino. This sample of three accretion flares is correlated with high-energy neutrinos at a significance of 3.7 sigma. Super-Eddington accretion could explain the high particle acceleration efficiency of this new population.Comment: 46 pages, 11 figures, 3 table

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Photo-designed terahertz devices

    Get PDF
    Technologies are being developed to manipulate electromagnetic waves using artificially structured materials such as photonic crystals and metamaterials, with the goal of creating primary optical devices. For example, artificial metallic periodic structures show potential for the construction of devices operating in the terahertz frequency regime. Here we demonstrate the fabrication of photo-designed terahertz devices that enable the real-time, wide-range frequency modulation of terahertz electromagnetic waves. These devices are comprised of a photo-induced, planar periodic-conductive structure formed by the irradiation of a silicon surface using a spatially modulated, femtosecond optical pulsed laser. We also show that the modulation frequency can be tuned by the structural periodicity, but is hardly affected by the excitation power of the optical pump pulse. We expect that our findings will pave the way for the construction of all-optical compact operating devices, such as optical integrated circuits, thereby eliminating the need for materials fabrication processes

    Elliptical Galaxies and Bulges of Disk Galaxies: Summary of Progress and Outstanding Issues

    Full text link
    This is the summary chapter of a review book on galaxy bulges. Bulge properties and formation histories are more varied than those of ellipticals. I emphasize two advances: 1 - "Classical bulges" are observationally indistinguishable from ellipticals, and like them, are thought to form by major galaxy mergers. "Disky pseudobulges" are diskier and more actively star-forming (except in S0s) than are ellipticals. Theys are products of the slow ("secular") evolution of galaxy disks: bars and other nonaxisymmetries move disk gas toward the center, where it starbursts and builds relatively flat, rapidly rotating components. This secular evolution is a new area of galaxy evolution work that complements hierarchical clustering. 2 - Disks of high-redshift galaxies are unstable to the formation of mass clumps that sink to the center and merge - an alternative channel for the formation of classical bulges. I review successes and unsolved problems in the formation of bulges+ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of dark matter galaxy formation including baryons. I review how our picture of the quenching of star formation is becoming general and secure at redshifts z < 1. The biggest challenge is to produce realistic bulges+ellipticals and disks that overlap over a factor of 10**3 in mass but that differ from each other as observed over that whole range. Second, how does hierarchical clustering make so many giant, bulgeless galaxies in field but not cluster environments? I argue that we rely too much on AGN and star-formation feedback to solve these challenges.Comment: 46 pages, 10 postscript figures, accepted for publication in Galactic Bulges, ed. E. Laurikainen, R. F. Peletier, & D. A. Gadotti (New York: Springer), in press (2015
    corecore